Possible compensatory role among chloroplast proteases under excess-light stress condition

نویسندگان

  • Yusuke Kato
  • Wataru Sakamoto
چکیده

The reaction center protein D1 of photosystem II (PSII), known as a primary target of photodamage, is repaired efficiently by the PSII repair cycle, to cope with constant photooxidative damage. Recent studies of Arabidopsis show that the endo-type Deg protease and the exo-type FtsH proteases cooperatively degrade D1 in the PSII repair in vivo. It is particularly interesting that we observed upregulation of Clp and SppA proteases when FtsH was limited in the mutant lacking FtsH2. To examine how the complementary functions of chloroplastic proteases are commonly regulated, we undertook a high-light stress on wild-type Arabidopsis leaves. The result that wild type leaves also showed increased levels of these proteases upon exposure to excessively strong illumination not only revealed the importance of FtsH and Deg in the PSII repair, but also implied cooperation among chloroplastic proteases under chronic stress conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloroplast Protein Turnover: The Influence of Extraplastidic Processes, Including Autophagy

Most assimilated nutrients in the leaves of land plants are stored in chloroplasts as photosynthetic proteins, where they mediate CO₂ assimilation during growth. During senescence or under suboptimal conditions, chloroplast proteins are degraded, and the amino acids released during this process are used to produce young tissues, seeds, or respiratory energy. Protein degradation machineries cont...

متن کامل

Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase

The nuclear-encoded chloroplast NADP-dependent malate dehydrogenase (NADP-MDH) is a key enzyme controlling the malate valve, to allow the indirect export of reducing equivalents. Arabidopsis thaliana (L.) Heynh. T-DNA insertion mutants of NADP-MDH were used to assess the role of the light-activated NADP-MDH in a typical C(3) plant. Surprisingly, even when exposed to high-light conditions in sho...

متن کامل

The significance of cysteine synthesis for acclimation to high light conditions

Situations of excess light intensity are known to result in the emergence of reactive oxygen species that originate from the electron transport chain in chloroplasts. The redox state of glutathione and its biosynthesis contribute importantly to the plant's response to this stress. In this study we analyzed the significance of cysteine synthesis for long-term acclimation to high light conditions...

متن کامل

Quality control of photosystem II: direct imaging of the changes in the thylakoid structure and distribution of FtsH proteases in spinach chloroplasts under light stress.

Under light stress, the reaction center-binding protein D1 of PSII is photo-oxidatively damaged and removed from PSII complexes by proteases located in the chloroplast. A protease considered to be responsible for degradation of the damaged D1 protein is the metalloprotease FtsH. We showed previously that the active hexameric FtsH protease is abundant at the grana margin and the grana end membra...

متن کامل

Impaired Mitochondrial Transcription Termination Disrupts the Stromal Redox Poise in Chlamydomonas1[OPEN]

In photosynthetic eukaryotes, the metabolite exchange between chloroplast and mitochondria ensures efficient photosynthesis under saturating light conditions. The Chlamydomonas reinhardtii mutant stm6 is devoid of the mitochondrial transcription termination factor MOC1 and aberrantly expresses the mitochondrial genome, resulting in enhanced photosynthetic hydrogen production and diminished ligh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013